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THE CALCULATION OF DOWNWASH BEHIND SUPERSONIC WINGS
WITH AN APPLICATION TO TRIANGULAR PLAN FORMS

By Harvaro Lowmax, Loua Siouper, and Max. A. Heaster

SUMMARY

A method is developed consistent with the assumptions of
small perturbation theory which provides a means of determining
the downwash bekind a wing in supersonic flow for a known
load distribution. The analysis is based wupon the use of
supersonic doublets which are distributed over the plan form
and wake of the wing in a manner determined from the wing
loading.

The equiralence in subsonic and supersonic flow of the down-
wash at infinity corresponding to a given load distribufion is
proved. In order to introduce the manipulative fechniques
which are subsequently employed, the unswept wing of infinite
span s treated for supersonic speeds. The principal applica-
tion in this report, however, is concerned with the downwash
behind a triangular wing with leading edges swept back of the
Mach cone from the vertex. Complete solutions are giren for
the chord plane in the extended vortex wake of the wing and for
the vertical plane of symmetry. An approximate solution is
also provided for points in the vicinity of the center line of the
wake.

INTRODUCTION

The linearization of the partial differential equation satis-
fied by the velocity potential for compressible flow yields, for
subsonic flight speeds, an elliptic-type equation which is re-
ducible by means of an elementary transformation to the
basic equation in incompressible flow. As a consequence of
this result, wing theory in the subsonic realm employs the
same concepts and types of analyses that belong to classical
incompressible theory. At supersonic speeds, the differential
equation for the velocity potential is hyperbolic in type and
for wing theory is equivalent to the two-dimensional wave
equation of physics. In spite of the different character of the
basic differential equation in the two flight regimes, certain
formal equivalencies can be set up which are intuitively use-
ful in the solutions of specific problems. In particular, the
velocity potentials of a three-dimensional source and of a
doublet each have analogous forms in the two cases. The
solution of different boundary-value problems encountered
in wing theory has been discussed in reference 1, and it has
been shown how suitable distriButions of sources and doublets
may be used to determine the flow potential associated with a
given lifting or nonlifting wing.

The calculation of downwash behind a wing, for incom-
pressible flow, relies almost exclusively on the use of Prandtl’s
lifting-line theory which is, in turn, developed from the con-

cept of a single horseshoe vortex. The conventional approach
to the general downwash problem is to determine, first, the
induced field of the simple horseshoe vortex by means of the
Biot-Savart law and, then, from a knowledge of the span-wise
distribution of loading over the wing, to caleulate finally the
induced field produced by a vortex sheet composed of super-
imposed vortices of varying span.

When downwash calculations are to be extended to the
case of supersonic wings, it appears at first that the use of
vortex sheets is inadmissible since no practical equivalent
to the Biot-Savart law exists. It is, in fact, true that the
horseshoe vortex no longer plays the outstanding role it
has at lJow speeds. However, when a more detailed investi-
gation is made of the underlying analysis, it becomes apparent
that vortex theory and the Biot-Savart law can be developed
from the initial use of a constant distribution of doublets
over a given surface (e. g., see references 2 and 3). These
doublets produce a discontinuity in the velocity potential
at the surface, and, for incompressible theory, the curve
which bounds the surface can be identified with a vortex
curve possessing circulation. The proof of the Biot-Savart
law and the introduction of vortex sheets are direct conse-
quences of these basic idess.

Since, as was shown in reference 1, supersonic boundsry-
value problems involving sources, sinks, and doublets can
be solved in & manner analogous to that used in low-speed
theory, a method is therefore provided for an attack on the
downwash problem for supersonic plan forms through the
use of doublet distributions. By means of this method the
downwash immediately back of the trailing edge and at an
infinite distance behind a wing will be derived and shown to
agree with the previously published results of P. A. Lager-
strom (reference 4).

The present report has three principal aims: First, to out-
line the theoretical approach to the determination of the
velocity potential of the flow field associated with a supersonic
lifting surface and the subsequent ealeulation of the down-
wash; second, to apply the theory to the case of & triangular
wing swept back of the Mach cone and to present the results
of the complete calculations over the chord plane in the
extended vortex wake of the wing and on the vertical plane
of symmetry up to about 40 percent of a semispan; and,
third, to serve as a guide through some of the more difficult
mathematical manipulations so that the calculations can be
extended to other plan forms. A simple first approximation
is also advanced for the downwash variation about the axis
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of symmetry, and these approximate values of downwash

are compared with those obtained from the exact calculations.

In the theoretical portion of the report, the boundary-
value problem will be introduced and the solutions, obtained
from Green'’s theorem, will be given for low-speed and super-
sonic flow. - In the section of the report devoted to applica-
tions, the theory will be used to evaluate the potential func-
tion at an infinite distance downstream from a lifting wing.

The theory is next applied to the case of the unswept wing

of infinite span since the mathematical problems involved
correspond closely to those for the more general case. From
this apphcatlon, a genere,l procedure is developed for treat-
ing wings with supersonic trailing edges. The final applica-
tion of the report will be devoted to the triangular wing. In
all of these applications, it will be seen that the analytic
expressions which have been obtained in supersonic theory
for the load distributions over certain plan forms afford a
means whereby the chordwise distribution of pressure may
be introduced into the analysis, and, therefore, such expedi-
ents as lifting-line the01y are no longer so essential.

"~ The entire theory is postulated on the. assumptlons of
thin-airfoil or small-perturbation theory and, consequently,

thickness effects and lifting-plate solutions are additive. - For.

the results that are given in the plane of the airfoil, the thick-
ness effect, which is necessarﬂ.y symmetmca.l w1th respect to
this plane, is zero.

The material given in the present report is a combination
of two previously published NACA Technical Notes (refer-
ences 5 and 8). L _ o

LIST OF IMPORTANT SYMBOLS

o velocity of sound in the f1ee stream
b span of wing
€ root, chord of wing .
E, E, complete elliptic integral of the second kind mth
modulus &, &, respectxvely
(==, \/ i d
E@t k) incomplete elliptic mtegml of the second kind
with argument ¢ and modulus &
260 \/ = tf “]
20tV0 ) -
by Wy ] - o
K complete elliptic integral of the first kind with
modulus % [K-—f 1/——_5._—__=(1 B2 :l
F(, k) incomplete elliptic integral of the first kind with
argument ¢ and modulus ko
[F(t k)= f V(- t2) (1 k)
M, free-stream Mach number ( )
P static pressure - o T o
Ap Pi—De o

q free-stream dynamic pressure (2 poVu )
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L o V=) y—y) - (e—=)*
re - Ae—2) —Fly—y)—p(z—=)?
u, v, W perturbation velocity componerits in the diree-
: tion of the z, ¥, and 2 axes, respectlvelv
Au, : Uy—U1 :
"8 free-stream velocity
wp 2 component of velocity induced by doublet dis-
fribution over plan form

wy — 2 component of velocity mduced by doublet dis-
_ e tribation over wake .
Wy o —Vga :
z, Y, 2 Cartesian coordinates of an arbitrary point o
%1, %, 21 Cartesian coordinates of source or _doublet
position :
x ) - - .E - . . - PR = .
o S . e
) 1,
Bz
zo - co N -
a . angle of attack B
B . VM1
eo . ﬁ tan ‘b
“Mo j:': - Mach angle ( arc sin H)
o0 ~ density in free stream
® _ perturbation velocity potential
A‘I’, cbu_q’l
¥ : semivertex angle of triangular wing
- sign denoting finite part of integral
SUBSCRIPTS
% conditions on upper portion of sulface
l conditions on lower portion of surface
L. E. conditions at leading edge
T.E. _  conitions at trailing edge o
W R wake - : - . -
P plan form '
s conditions on discontinuity surface (at 2;=0)
I, I, III conditions in regions I, IT and IIT on plan. form

- (fig. 4)
A, B,C,D, Econditions in regmns A, B, C,Dyor E, in wake
' of triangular wing (figs. 1 and 2)

THEORY
BOUNDARY CONDITIONS

The proposed problem is one of finding the downwash

.behind & flat plate which supports a loading consistent with

its angle of attdck and plan form. It will be assumed
throughout the analysxs that this load distribution is known.
Such values were given for several plan forms in reference 7
and further results can be found in the literature on s'ilpéi"-
sonic wings.

The load distribution over the wmg may be obtained
from a knowledge of the differences in pressures acting on
the lower and upper surfaces. Morcover, in thin-airfoil
theory, where boundary conditions are given in the z==0
plane (i. e., the plane of the wing), a simple relation istsex_
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between local-pressure coefficient and the streamwise com-
ponent of the perturbation velocity. Thus, assuming that
the free-stream direction coincides with the positive z axis
(fig. 1 (a)), and denoting by u the z component of the
perturbation veloeity, it follows that

2Au,
—u) =" 6y

where the variables are defined in the table of the symbols.
Furthermore, from the definition of the perturbation velocity
potential &

o= f ude )

where a is & point in & region at which the potential is zero.
Combining equations (1) and (2), the jump in potential in
the plane z=0 can be determined by integrating the jump in
the u induced velocity or, what amounts to the same thing,
the jump in load coefficient. Thus,

A®,— f sude=22 (" (Ap) o ®)

where the integration extends from the Ieadmg edge to the
point z and A®, represents the jump in @ in the zy plane.
Since load coefficiet Ap/g must be zero off the wing and since
% is an odd function in 2, the value of ¥ must be zero for
all points off the wing in the xy plane. It follows that A,
remains constant at & given span station for all values of 2
beyond the trailing-edge position.

L’
B'
i
(&) M
A gy, Ay
/A R \ .y
A A B B’
®}
{a) Plan form.,

(b} Sections showing distribution of As..

FIGURE 1.—Sketch showing arbitrary lifting surface together with disiribution of A®,, the
jump in perturbation veloeity potential in the plane of the surface.

Figure 1 indicates an arbitrary lifting surface in the z=0
plane together with the distribution of A&, for given constant
values of ¥ and 2. In both subsonic and supersonic theory,
the wing together with the semi-infinite strip extending

downstream of the wing form a discontinuity surface for the
velocity potential, while A®, is equal to 0 throughout the
remaining portion of the zy plane. These conditions,
together with the fact that the vertical induced velocity w is
8 continuous function at 2=0, are sufficient to determine &
throughout space. The values of %, #, and w can then be
found from the corresponding partial derivatives of & with
respect to z, i, and z. The attention in the present report is
centered on w, the downwash function.

SOLUTION- TO BOUNDARY-VALUE PROBLEM

In reference 1, the solutions for boundary-value problems
of the type under consideration were given for both incom-
pressible and supersonic theory. The basic differential
equations satisfied by the perturbation velocity potential are,
for the two cases, respectively,

%% %
ax_ +ay2+a,- (4.)

and
¢ O O

Bz 20 ®)

Incompressible theory.—For boundary conditions pre-
scribed in the z=0 plane; the solution of equation (4) is

s f LG o0 (1) o

(6}
where

0AD
521 T

y— Y+ (e— Zl)z

and r is the area for which the integrand does not vanish.

r=+(@—z)*+

L, 1l /a1 .
The terms and y (52 ;_—): are equal to the veloc1tyl

1
4,
potential at x,,2 of a unit source and doublet situated at
the point z,,%:,0. The remaining terms in the integrand,
which determine the distribution of source and doublet
strengths, must be found from known boundary conditions.
If a lifting surface fixes the boundary conditions, induced
vertical velocities on the upper and lower faces of the surfa,ce
are equal so that
0%, 0%
aZ]_ 321

1 2 1
—[.[32.(57), za, @

Equations (6) and (7) are well known in potential theory
(reference 3, p. 60), but the derivation usually employs the
assumption that the value of @ is zero at all points infinitely
distant from the wing. This assumption cannot, of course,
be made in aserodynamic applications where the discontinuity
surface 7 extends to 2= «, as in the case of a lifting wing or
lifting line with trailing vortices. These latter problems,
with which this report is direcily concerned, are of such a
nature, however, that the induced effects at an infinite dis-
tance are confined to the plane x= .
the derivation of equation (6) reveals that the conditions
imposed on @, in general, can be relaxed sufficiently to permit

and

&(x,9,2)

An investigation of
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a discontinuity in a strip of finite width along the entire
extent of the x axis. The mathematical details of the deriva-
tion will not be given here but a statement of the restrictions
on & at infinity is worthwhile. Thus, denoting by 3%/0n the
directional derivative of & teken normal to a prescribed
surface, the following conditions apply:

1. The functions ® and @%/0n are zero at all points having
radius vectors which make finite (nonzero) angles with the
positive x axis, the points lying on & spherical surface of
infinite radius with center at the wing.
. usual potential theory assumptions except over the portion
of the spherical surface forming the plane x= «.)

. The values ® and 0%/0r are bounded at all points
mﬁmtely distant from the lifting surface and &t a noninfinite
distance from the positive # axis. (This condition places
restrictions on the values of ® and 0%/0z in the plane g= = .}

Conditions (1} and (2) are satisfied for a lifting surface of
finite span, and equation (7) is consequently applicable
directly to the determination of the velocity potential. As

an application of the equation, suppose a sheet of horseshoe -

vortices is situated as in figure 2 with bound vortices placed
= .

|

/-b/E
-y ,

FigURE 2—Voriex sheet with bound vortices on ¢ axis and distribution of eirculation
equal to Ad,.

on the y &ms, trailing vortices extending parallel to the
positive z axis, and has & spanwise distribution of circulation

A® symmetrical to the zz plane and defined for —é<y<§

Then the velocity potential corresponding to this vort,ex
sheet is given by the expression

F4 ® . dxl
®(2,,2) =E’f—bﬂ Ad, dylﬁ [G—z)'F G—y)  F 2] (8)

When A®,=constant, a single horseshoe vortex results.

Supersonic theory,—For supersonic boundary-value prob-
lems associated with plan forms as indicated in figure 1 (a),
where the known conditions are given‘“‘in the z=0 plane,
the general solution of equatlon (5) is glven in reference
1.in the form s e

0AD o1
s a31 )'<D 21 Tc) ___I dxldyl

ra=1/(w—:c1)’ B’(y-—yl)’ B”(z—zl)’
and the subseript s on the parentheses indicates that the
function is to be evaluated at z,=0. The region r is that

®(z,y,2)=—

7'4:

where

(This preserves the .
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portion _gf__tl_fe z51 plane bounded by the leading edge of
the wing, the lines paraIIel to the » axis and stemming from
the lateral tips of the wing, and the trace in the 2,==0 plane
of the Mach forecone with vertex at the point x, y, 2. Tho
sign | is to be read “finite part of”’ and was introduced
by Hadamard (reference 8) as & manipulative techmque
with the property that

t  A@)dz (% A(:c) — Az 24 (o)
(o—z)oR f —x)%E de (wo—a) 7 (1_0)

For purposes of calculat-ions, this was modified in reference
1to —— . . } o

w0 A(x)de * A@)dx —F(a)—C (11}

(@wo—z)*"? o (Zo—ax)*~

the asterisk indicating that no upper limit is to be substituted
into the indefinite integral, the latter being determined as

Faxy+C

where . .

C=lim 2A(”°’ F(a:)]

T—X0
Equation (9) is the direct_analogue of equation ().

1/1 1
terms 5 (E)a and 5

tial at z,%, z of & unit supersonic source and doublet situated
at the point 71, ¥, 0, while the remaining terms in the inte-
grand determine the distribution of source and doublet
strength and are determined by the known boundary comh-
tions.

When the potential function associated with a lifting
surface is to be evaluated, _ .

0P, beJ;
bzl bel

The -
(l l) are equal to the velocity poten-
02, 1. /1 qua. 7P

and equation (9) reduces to the form

1 ? 1 '
@ (x,y,2) =5 U;fAéb. (b_zl 7:)' dx,dy, (12)

In application, the region of integration in equations (7) and
(12) can be divided into areas occupied, respectively, by
the plan form and the wake region. Thus, for equation (12),

A(D.dl'ldyl
plan form [(£—%)*— B*( y—yl)!_ﬂzzgj.ﬂ’

f j;ake [(z—x,)? A,;I;(gx_ldy?ﬁﬂ Fiph (13)

Equation (13} presents a formal solution for the caleulation
of velocity potential and, subsequently, downwash for a
given surface in terms of A®,. Since A®, was related directly
to load distribution in equation (3), it is apparent that the
various known solutions to lifting-surface problems are
directly applicable. The fact that supersonic theory per-
mits the determination of load distribution in closed analytic
form for many simple plan forms provides a distinct advan-

@.(x! Y, Z) -

zﬁ’
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tage that is lacking in subsonie theory wherein virtually all
known results are available only in numerical form. Thus,
theoretical analysis of problems involving supersonic flight
speeds can be carried further before recourse to numerical
methods is necessary.

APPLICATIONS

VALUE OF POTENTIAL FUNCTION AT x=a

It is possible to show, from equations (7) and (12), that .

the potential functions corresponding to a wing with fixed
load distribution are identical at = for incompressible
and supersonic flow. Assuming A®, known, the values of
(z,¥,2) for the two cases are given, respectively, by the
equations

“ * A(dezld./]_
1A=L [ T e

2 [ f A®dr,dyy
Ir) Joue &=z F ="+
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for fixed values of ¥ and z the integrals over the plan form
in both equations approach zero as z increases indefinitely.
Thus, denoting by zrz. the value of #, at the trailing edge
of the wing, the potential functions at z=o are given by
the expressions

R 2 b2 :
<] ( ©,Y, Z) =lim Zﬁ_’.f—bﬂ A‘ID,(x K. )yl) dy;

T=—r@

f ® dx,
Jerw [—2)3+ (y—y) 2+ 27P2

and

. —zB® b2 . .
®(=,y,2) =11m 923 j:_m AD (zr 2,70 dY

LT

f* d.rl
rrp. [@—2) =By —y)*—

These relations can be integrated once to give for the subsonic
case

5222]3’2

®(=,y,2) =lim = f A%, @rs. )y

and o
8(z,y,2)= ___ Addridy, _ (x—1xy) -
' pisa torm [ (2—,) ="y —y) ' =2 e o b s e W
ﬁﬂ—l r AP dr,dy, 2 [ AD,(@r.s,Y)dy: (14a)
wake [ (@ —21)*— B (y —)*— %272 2r -2 (Y—y)*+z
Since, however, A®, is finite, it follows immediately that | and for the supersonic case
E—ry) * b2 AD, (r 5., 1)d
®(w,y,2)=li ——f AP yyod { - } f s Y) 8
(,y,2) _JI,E_'T frrm,y)dy [y—y) 2+ 2V —2) B —70) B2 sr, =5 _on G—y) L (14b)

From these equations, it follows that the sidewash and down-
wash at #= «are invariant with Mach number, provided the
load distribution is fixed. In fact, their values depend solely
on the spanwise load distribution, since the terms eorrespond-
ing to the chordwise distribution dlsappeared in the analysis.

This has been pointed out elsewhere in the literature. It
should be stressed, however, that the result which has been
obtained here states that equsl span load distributions in the
two cases yield equal values of the potential function at
This does not imply that a wing at low and super-
sonic speeds maintains the same potential function at in-
finity. When the wing is kept fixed, the distribution of w
on the wing is fixed, but the load distribution is a function of
speed.

=,

DOWNWASH ON AND OFF THE WING

As a further application, the unswept wing of infinite span
will be treated for supersonic speeds. In this case, as is
well known, the induced velocities are zero at all points
downstream of the upper and lower Mach waves stemming
from the trailing edge. An abrupt jump in vertical velocity
therefore occurs at the trailing edge of the wing. Con-
sideration of this jump for the unswept wing furnishes con-
siderable insight into the nature of the mathematical diffi-
culties inherent in the calculation of downwash on and off
wings of arbitrary plan form. The calculation for the par-
ticular case will therefore be followed by a more general
discussion which will be of value in connection with the later
treatment of the triangular wing.

056846—51——15

Unswept wing of infinite span.—The pressure distribution
for the wing of infinite aspect ratio is constant. For this
so-called Ackeret-type loading, Apfq is equal to 4e/8, so
that, when the leading edge lies along the ¥ axis

(15a)

Plry,z)

@ ®)

(2) Point P ahead of trailing edge. {b) Point P behind trailing edge.

FieURE 3.—Areas of integration for infinite span wing.
where o is angle of attack. In the wake

AD, _L cﬂilpd =2€!Tr'u

z o g z 5 o (15b)

The downwash, or vertical velocity, will first be found when
the point is between the Mach waves from the leading and
trailing edges and then when the point is downstream of the
trailing-edge wave.
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Since the wmg is of infinite width and experiences no varia-
tion with y, it is possible to consider the problem at y=D0.
Thus, from equamon (13}, for the case when the point under
consideration is between the Mach waves from the leading

and trailing edges with its forecone cuttmg the ng as shown

in figure 3(a), -

p=lim =25 Vo f T, é@
_HO B o T, ar
; ———
f_ﬁ"\/‘(?:z—lwzzz dy .
. [G—ay—Byr—FaT"

where the symmetry of the problem with respect to. the U
axis has been used. Computing the ﬁmte part of the integral

s=lim 2268V0c -
e K

¥ dIEl
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f r—gfEra z1dx, | 16)
- Jo _ [(m_ml)s_ﬁzzzl,‘/(x_xl)s 32 2_Bzz: g
and o . _ B
b<I> b 228V, "ae ' o
T 0z_ 0z ];1-1;% T : B
. 2Byt 2 dx;
. —J; [e—2)*— 2"} @w—x1)*— % ﬁ’ ? (17)

Equations (16) and (17) can be evalua,ted du'ectly to glve thé
results o ;
: Tfoot 2

=% |—|—ﬁz> | (18)

w=—-Voa

For a pomt behmd the tra.ﬂmg—edge wave (ﬁg 3 (b)), the -

1 228Voae
=R ﬁ (@)= ﬁ’Z’Jx/(x—mz)’—Bza"—B’é‘ .

and wis given by the partial derivative of ® with respect to 2.
The term containing the single integral is zero, since the
integral itself is bounded for all values of ¢, while the term
containing the double integral is readily caleulable. Thus,
the values of the velocity potential and the downwash for a
point behind the trailing-edge wave are given by the relations

P T QOCCQ

RE
(20)

w=0 _ -

These results are the familiar equations a.ssocmted Wlth two-
dimensional supersonic flatplate theory

The point of principal interest in. this development is the
jump in the induced vertical velocity win passing from a point
just ahead of the trailing-edge wave to & point immediately
behind the wave. - A study of equations (17) and (19) shows
that this jump is the result of the discontinuity in the contri-
bution to the downwash of the term containing the single
integral.

the result that .o T
-——Voa . ; o

whereas behind the_ wave, the contribution of the term to w
was zero. -

The method of atta.ck used in the study of the unswept
wing can be generalized to apply to arbitrary plan forms. A
discussion of this case follows.

Arbitrary plan forms.—As will be shown 1a.ter, for any plan
form with supersonic trallmg edge; the jump in the value of
w in the plane of the wing at the trailing edge can be cal-

culated directly by means of simple momentum methods.

At this point, however, it is‘of more interest to consider in a
general manner the na,ture of the integrations involved when

the point #, y, 2 is either ahead of or behind the trailing-edge

2zBVoac f

Ahead of the tr alhng-edge wave, thls term ylelded

two quant1tles can be determined in & similar manner. Thus, .
m S Wl’;a’ . di-l =
v ﬁo [(x-—xx)’ —By—FZT"
S __ (19)

vk

x L
- :
@ ® S

(a) Point P ahead of trailing edge. (b} Poiut P behind tralling edge.

FIGURE 4.—Areas of integratlon for arbitrary plan form with supersonic tralllnz edgo

wave. Figures4 (a) and 4(b) showa. plan fonn \nth astr alghl,_
t,ra.lllng edge with areas of integration indicated for the point
P in each of the two positions. (The straight ireiling cdge
is not & necessary restriction and is only introduced for con-
venience of notation.) The regions of integration are divided

under the assumption that the first integration on tho plan

form in equation (13) will be made with respect to 1. When
the point P is ahead of the trailing-edge wave, therefore, the
contribution of the wake is zero and the integration overthe

_ plan form is made to conform with regions I and II. When

the point is behind the trailing—edge wave, three integrals are

evaluated corresponding to regions I, II, and III. In the
case-of the infinite aspect ratio, unswept wing region I was,

of course, nonexistent and, in general no essential dlIﬁcuIty
in regard to the limits of mtegratlon is introduced by this
region regardless of where P is situated. In region IJ, how-
ever, the problem must be treated in more detail.

Consider first the case when P is ahead of the wave and

denote by @, the contribution of one side of region II to the
total potential.

Thgn _
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fyl A@l (xl,yl)dyl
e[ —20) =By —y) 2 — 277

(21a)

T T

. —pg faia
P =lim _éﬁ_z fz—ﬂ\ s=+.:d$
€=

where
Fi=y+5 VG—a)— 7

Similarly, when P is behind the wave and the same subseript
notation is used to refer to one side of region 1I, the value of
@n. is

¥ AZ (2, y)dy:
# f +e [@—z ) —Bly—y)'—

-
&, =lim —F=
€3 Yl z

3222]3;’2
(21b)
where Y7 is as defined above.

The contributions of the other side of region II to the po-
tential will not be considered separately as the behavior is
identical. When P lies ahead of the wave, e appears in the
limits for integration with respect to both 3 and x;. This
corresponds to the situation in equations (16) and (17) and,
as for that problem, the limiting process is carried out after
the integration is completed. When P is behind the wave,
it is not necessary to defer the limiting process, since

fi A®, (1, 1) di
vie [@—x)’—B(y—y)*— B2

and if {} represents the integrand, then

([ Jaw [ { Jaw

But since

_Bz

_‘

d_zl_ ]J.Il’].

q’ll’a

Ad; (2, )
[(I—xl)z—ﬁz(y—-‘y - A <M

for ¢q < 2, < 7 (1. e., { } is bounded for all values of z; in the
interval of the first integration); and further, since

lim 37 f e gy =lm 1fe=0
€~ ¥ €30 -

therefore, for P situated behind the trailing-edge wave, the
contribution of region Ila is given by

—pP2
QIIS 25;_ ﬁ dxl

The significance of this result is that, when the point P at
x, ¥, 2 is behind the Mach wave from a supersonic trailing
edge, the limiting process associated with region IT need not
be considered. When P is ahead of the Mach wave, the
term e must be retained in the analysis and the limiting
process used. As was previously noted, the general analysis
developed in this report places no restriction on the orienta-
tion of the trailing edge; however, it should be pointed out
that region IT exists only for the case in which the trailing
edge is supersonic. Therefore, the jump in downwash, ob-
tained from the integration over region II is associated only

¥ A‘p; (1'-[, yl)dyl
v [E—z)—By—y)'—

Bzzz]sfz i

(22)

* vertex angle of the triangle.

. @W_ __zHB? ZH,Bz

217

with supersonic trailing edges; whereas both the downwash
and loading are continuous across a subsonic frailing edge.

TRIANGULAR WING

Consider a triangular wing (fig. 5) with leading edges swept _

lm

4o

>

FIgURE 5.—Regions 4, B, and C for trisngular wing in roye plane.

\

X0
back of the Mach cone from the vertex. The loading over
the wing is known to be (references 7 and 9)

AP 4:302&1:1
¢ EB+/6%—By’

23)

where Fj is the complete elliptic integral of the second kind
with modulus k,=+1—67 and §,=8 tan ¢, ¢ being the semi-
From equation (3)

A®,=HA /82— 24
where
. 20!170 .
H= o] (25)

Setting, for convenience, ®=%&,+® the velocity potential
at x, ¥, = is given by equation {13) to be the sum of the two
expressions

"HBZ v 0%, — By, dxy dy,

f j;lan form [ (x—1,)2— 82 (y—y)2—p27? (26)

f f v 00’z —By:* dzy dyy or
wake (X —2) — B2 [y — ) — B2 (27)
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Equation (26) represents the. contribution to the velomty
potential furnished by the doublets distributed over the .

plan form while equa,tlon (27) represents the contribution
furnished by doublets in the swake. The latter equation is
the mathematical equivalent in supe1somc flow of the sub-

sonic velocity potential of a_sheet of horseshoe vortices .

oz !

corr esponding to an elhptlc span load dlstrlbutlon Equa-

g=® is 1dent1cal to the veloc_lty potentlal of the sub_somc
vortex sheet. However, in the vicinity of the z=¢; line,
the behavior is entirely different.

In the present report, equations (26) and (27) will be
applied to the determination .of downwash in the xy and
zz planes.

SOLUTION IN THE XY PLANE B

Effect of doublets in the plan form.—For the purpose of
integration, it is convenient to divide the area behind the
wing into three regions as shown in figure 5. The division
lines separating these regions are formed by the Mach cone
traces from the trailing-edge tips.

The following symbols will be used_in the detivation of
the expressions for downwash in the zy plane induced by
the distribution of doublets over the plan form of a triangu-
lar wing swept behind the Mach cone:. :

E\ B, E; complete elliptic integrals of the _-sec_ond kind

with moduli &, k,, and ks, respectively

K, K, K; complete elliptic integrals of the first kind w 1th
moduli &, k;, and %s, respectively '

b Va (=)

ks (’Yz“‘#) 52—#')'
p—82/) \ya—n’

=

' +8) —VE=H F—4"

n ntu” =

e E(pt-w) —425(1» —.u) (u+E) (ﬂ'—E) )

: u—p' 2 :

. (' + B+ VE=N =¥
: pt+u o
5 (up' +8) 4+ VE~uh) (B~p")

! e

) E(utp!) + V2EQ - —u) (w+8 Cu -8

2 p—u' 4 2¢ -

4 e I L Gy 1 s R

’ pt

Bly—) B

n Co .

i yo—'eg—? o
74 y0+90$1 g
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. . ot B o L
The downwash we (z, 4,0 mey be obtained by consldenng

hmaaiz in equa.tlon (26). It can be shown that, in thls'

case, this limiting process corresponds to taking the pmtml
derivative of equation (26) with respect to z and thon sunpl_y
'settmg 2 equal to zero. Thus the expressions for wp in lhe
regions A, B, and C are, respectively, -

TR EDE ] PN

En
L » ‘(ui—n)(n — 1)
5 s l:ﬁo*"oio f 3)'“ d +
1+8,
- lf‘o+5olo _
148 J—
f' v g J‘ (;&2 [ —n) i—w) z()nw ) dﬂ}
ﬁ"_ . vyt
o Hﬂ T 144
T 2r ﬁo“"o’o Ldg+ j;o Izd-g— (29)
] 110, '
_ -
__HBl | (=™ V' —1) (—u)
wpc_—é? "Lﬁ"nfu dff (7))’ d +
B i+o,
SOl e e S
f+—°’ e [} LG
o e e @A R
. =l — L
—¥nHboTo
I ) ¢ V=) (—p) J
ST Jo e =t
- - - V.o""’uﬂ'u ;.lr'u_"—‘&’_n
Tg 146,
=2\ naes|[ 0 vaer| [ nae
S | —01_"'90_ B 1+e°
- ' a 30)

The sohitlon of the three integrals I;, I, and 3 will be dis-
cussed in Appendm A, o
The expressions for downwash in regions (i, B, and € may
then be expressed as the following single mtegrals which

can be handled by standard numerical methods:

?"wp4= IIB : zls”\g(%:#—)(m L‘l)dé .(.31)

wPB_ T [ Lu‘l'ﬂuzu 2?\ (I{ —L )d£+
1+3|, ) )
f’u*’o"’o .

f T e [ H_eze) 2]
2?\/&%(_&#_’)}&} e
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wp,=— 122 [ I BB @ Eyar+

0 ”ﬂTaﬂ‘ro ZEZ
T
ﬁfg‘l‘ﬂg,l’o
l" 16, { e ks [ﬁz(ﬂ ¢ 29 25“]_
Ug'rﬂ,,rol E “) (E_Lp.’)
Tite,
Ey [(E—p) ()
28\ ks }dE+
=Yg 10T

RINRICES Y A dE]

l‘ 148,
Jo 2

Effect of doublets in the wake.—The study of the down-
wash induced on the zy plane by the doublets distributed
over the wake will also be divided into the three regions
indicated in figure 5, and the symbols listed as follows will
be used in the derivations:

5_.-1 Ya—v
s Y4 (5.4—1”)
35 (Ys—¥'
Qp % 53_7’)
’E !P’—ac
e o ‘Yc"‘”')
E, Ep E; complete elliptic integrals of the second kind
with moduli k4, ka, and ke, respectively
rd 1 -~ )
E(Z LA)
‘y incomplete elliptic integrals of the second kind
E (a_’ ILB) \ with arguments 1/as, 1/az, and ac/ke, and
B with moduli k.4, k5, and k¢, respectively
'C
E( = Lc)

K, Kz K, completeelliptic integrals of the first kind with

moduli ks, kg, and ke, respectively

s 1 -~
F(5 k)
-1 incomplete elliptic integrals of the first kind
F (&—, I.:B) \ with arguments 1fa,, 1/as, and acfkc, and
e moduli k., k5, and k¢, respectively
F(k L Ac) J
A 3a ’YA_V
AA / 54—'1’ )
'\ 53—'1'
ka ( v—nz) (53—1' )
E 'Yc (V —50)
¢ \ bc \re—"v
LL, undefined limits of integration
T z
o o

Yo i—f
20 g—':
(' +E&5H —+ & —¥) & —vD)
Ya Il+ yf
" Bt+v)— 25—} —&) (1)
B v —p+ 28
(' +&9) + V(EE—) & —D
Yc v_{_vl
5, o' +8) + V& —+) & —»")
PR
5 be+r) +v200—) =& GtY)
8 vV —r+ 28
s o +&9 — &~ &' =)
(o4 1 .,f
¥
Bly—y)
n e :
v Yo+ 6
v Yo— &
) Xe—1

On integrating equation (27) with respect to #; and using
the notation just presented

_@ £oZ0Co

N (p—mn) (n—-V) .

Ly (ﬂz—no)\"& —1—2

34

The limits on the mtegral as previously noted differ in the
regions 4, B, and C shown in figure 5; however, in each case
the limits are roots of one of the two radlcals in the integrand.

It is desirable to express equation (34) in a different form

219

in order to obtain an expression for downwash in the plane .

of the airfoil.
syt & [ JG=m =) tan =Bl |

zoVE —r—2"

£ - d’ql

2R —1—2® )

Integrating by parts

v+ —2q o

J
L 24— (n—7)

35)

When hm b
2i—0 =

three regions the contribution to the downwash made by
the doublets in the wake is given by the expression

__Hp v+v —29
T 2nh )L 29y (v—n) (n—>')

VB

The solution of equation (36) in regions A, B, and C will
be considered separately.

T is considered, it can be shown that in all )
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Region 4 | ehmma.tes the linear term in the radical of the integrand,
Inregion 4, Li=»and L,=»". The substitution n‘=% end equatlon (36) becomes .
_____ =y —54
v vt :| l: :l Eo _'YA
ma= "?1'50\/ AT LR f [ el e ~ 0
"“"" V—‘YA
The identities .o . | are useful in bhe mtegra.tmn
‘ 502.='Y.454 P 5— -
and The transformation w—y t is ne‘ct mtroduced and the

(64— (' —) 4—’”&&—»”) —r0=0

.

”,, H

expressmn for downwash becomes

— ?cAlwI

1—e®

HB\/(V—M (n—r/) ( o w)(

Ty

) [f‘l 274(1+a4w)<1+7‘

Integrating the second term by par ts and a,pplymg the fundamental propel tles of even end odd functlons yleldq '

)\/ f (H_n )\/

]

T 1 do

2'Y.4.

£-

1 642 ( 1— LAz)

(*’—VA) (’YAi”’) @ 4_74).(5_4_—"1’

[1_

] VI—k 2 (1 —wf)-+

1— ?Azws - 1— (ﬁ)za_“-a o?

185 —yaa,®

|i'ma,,; (1 +3* s )\/_ﬂ—;]

l—w (‘YAGA) +1 ]\/(1 kA""’) (1"“-"2)

EABwZ

‘~7Tfo\/(7’—’YA) (')-’-A"'V-') (6A 'YA) (

v+

% _"){[v 0 (1+—a w)\/

1
1—o? }
dw '

(38)

2f1 5‘42(1 kAﬂ) 2CI.Y(A.‘
0

(Ba*—v4’as®) (1—- s)“"2\/1 ch 274 (l

A2

aAng) ‘\/(1 kﬁwf) (1 —w ) }

The Jacobian transformat.lon W=§n U reduces the 1ntegrals in equatmn (38) to standard eIhptlc forms 63 efelence 10), and

L _,,,,)] \/“T{ Wc; — T =5 [KE(lkA —L’AF(l:kA)]+ } (39)

Region B ' The tlansformatlons n—'y”l_l_g_?t and —-——-;t where
In region B, Li=4§ and Lg—lo’ and equatlon (36) ma.y : Y )
be written o B, ; 1 == (ya—v') (§—38) + (fo—v5) (Br—»") =0
and
Wwy= ;igﬂ & (y+y ) £ — B (Eo'i“)’s) (V—aa) + (Eo‘{" 53) (V—"Ya) 0
v\ dp - - B reduce equatlon (40) to - I
(%) ‘5"”“’] Vo= G Dl )] e o
L o (40) e L :
w Hg [53—‘)’3 v—1Ig :l f (V"I"V’) 50 +’YB Gneo | (v'l'"”')'YB-(i."'an) g2 _l_'Ysz(l'l‘an) dw_ .
7B 971' Sl v—vs (53—1!')(&%_—_532) 2y5(14apw) Bp B¢ 9 (1 +’YB a w) ( _[_'YB ) VU—E2e?) (I—o?)
ée—ve 7—53 . ’YBGy 1 _1’+V'
27"3;'0 v—9p \/(55—7 ) (& —532)] ___ e \/(l —kg%?) (I—wf) +f [(68 —&) (1 26p )+
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&'(+v) Gz—7va) — (35—va8)*

(53—‘}’3) *

dw
Pabsl=al) (1 ) 0wy (b2—2% )a —ka’w’):l VT Fd (1—)

552

When the transformation w=sn % is made, equation (41) is readily integrable (reference 10), and, after algebraie simpli-

fication, may be written

GBEB

= (N

Region C
In region C, Li=%& and L,=—§, and equation (36) is

written

=_E_I£ & y+y' —29
e 2wk Jto 20/ (r—n) (1—»

w sVE—Rd 6

=~ 22 ({5 %) (62— T §

(as—ks)

—dc

bt () e ()]
(as—kz) Vas®—1) (as®— ks ' (42)

The deriviation of the expression for wg, is similar to
that for wy, with the exception that in this case the substi-

tution w=\/ 25 t is made, and equation (43) may be written
(*4

SOLUTION IN THE XZ PLANE

Just as in. the study of downwash in the =y plane, so also
in its study in the zz plane it is convenient to consider
separately the effects of the doublets distributed over the
plan form and the wake. The subscript notation for ww
and wp is the same as before and again w is equal to wyws.

Effect of doublets in the plan form.—In the 2z plane two
regions are indicated in figure 6. Region E lies between the

Za
3

/ I 8e— =

Fieuee 6.—Regions D and E in the xezq plane for a trianguler wing.

Mach wedge from the trailing edge and the line of intersec-
tion of the two cones from the trailing-edge tips. Region D
connects this region to infinity. Again the limits of integra-~
tion form the basis of the division into the twe regions.
The symbols listed below will be used in the derivation
of the expressions for downwash in the 2z plane, induced by
the distribution of doublets over the plan form of the wing.

E,E5E, E;, complete elliptic integrals of the second kind

with moduli k,, &5, ks, and ks, respectively

KK, K,,K;, complete elliptic integrals of the first kind
with moduli k,, ks, ks, and k5, respectively
6,
k4 Ozl

V@—z)*—F*

s () B () i) e

k )

5 Ve—z)—F%
5 8oz

k Va—c)*—p2
% o

Region D

In region [, equation (26) is written

i
H 2 (e B 6,2 I 2
®pp=— & 'rrﬁ f ° dxlj; [(-‘Z?—l':) :—xtsi?lzfz—y'lﬁzzzlm i

Integrating with respect to g leads to
zHB

$p,=—F
Pp T

¢ Bz, (K,—E)dn

Changiné the variable of integration gives

— 2HB (&, Bofzks— V822 + B2 (ki —67)] (Ki—E, dke
022+ B2 (b —6,D) kEl—62) "

§P=

D T Jo

Tald.ng the Pﬁartia-]. deriva:t-ive of @PD with respect to z gives
the expression for the downwash as '

Hﬁ{kﬁzﬁzz’ K40—E40) By
7 L Gl \kyg'—6" ) o+ 672 (s, — )

IVP D -

ek — VERF T FEEd—I0) |1+

=k 4302

L ([eozxﬂ+ T 0T 1) (e2m)

(K—E) dh} - (45)




Applying the Jacobian transformation’ w=¢n & "

_ H{z—co)b'c® f Ep
Bz (@ —cy) T — B2 o

The expression for &5, as given in equatton (48) is 1nte—'
grable (reference 10} and betmmes Lo
H(T-—Cn) 90200 S

i o) 0 %0 Kn\/1+an’f€n’)( )
w82y (@ —cp) —B " 2N kR \fl—l-a,, p

’ ?E_Q _\i’ 1‘:|' dpzlf D"
[iFt@s, b+ 2y tente.

" 1—sniu
14-apkp’snu

du (48)

Ppp,=

cI)WD=
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- 2 . - . .. ——
In region E, a similar derivation yields the solution o VB*2'+bo'e®
o o ip, Eg complete elliptic integrals of the second kmd
wp ____E_@ pe? Ksﬂ_E’ﬂ) * : Wﬂh moduli kp and kg, respectively
E 302602]{:5 1:__ k502902 - . § ..
— | E(a'p,k'n)\ incomplete elliptic mtegmls of the second kind = .
Oy lx— 22! 5023[,’-}-,323'2_(1—_-}':502?0’)] _ ~ | Eles ks with arguments a’p, and a’ and moduli &5,
1;$zk502302+)3222(1_ 00 o | . and kg, respectively o _
s Ke—E, 6 | 23,262 ' 7| Kp,Kx complete elliptic integrals of the first Lmd
I;sﬂ B 1= fnf&o { [xﬁ%’ J__BZzi(l k 23 z)]m }dks-l- ) with moduli %k, and kg, respectively
2k 8: Fla'p, k" p) mcomplete elllpt,lc mtograls of the first l\md
j (K,— E;) T 2 90 { [aogmz T Bzzz%é 602)]3’2 }dk] F(a’z, /‘c_’z) with arguments o'p and a’z and moduh ]l- b
- and kg, rcspectwely
-(46) T -
Effect of doublets in the wake.—The limits of integration D ; VE—co)i—Fie* :
again necessitate the divisioh of the portion of the plane : :
behind the trailing-edge wave into two regions, D and E. | k'p V1—=Fk,?
The following list of symbols will be used in the derivation [y
of downwash in the zz plane, induced by the doublets ke IR A Ol el -
distributed over the vortex wake: : - ' e bt
. N=r - S S R TR (o
pa o ' sn(iap) —ap?
s Ve—e)™—FZ = smiiow) . —ag? )
T—C . S
Region D
By =
s Bz - In region'D equation (27) becomes
S ’ — '"II f o fx";\) i‘1’+zz -:. dxl_ L (47)
i 1/ 90”60 —p yx'dyl [e—z)*— B (y"+2) ]
Integrating with respect to xl, and’ usmg the definition of B L o D
® “H(a: Co) I‘ 1/00209 —Bzy1 e ~1E(a’p, k'u)—%F(a'm k' p) "K% }=—
o (y12+z=) 1[(35“00)2 — R f { —_— =
T .:Hz /_as,z
_H(IE—C_Q) 90260 f l—cu f { ! L, 21{ +'\ 1__2{ 3
=T r Ba—c—fe ( +30 e’ w) Tors ?
[KDF(a by k' o) —EpF(a’p, k' p) — KpE(a D,A D)]}
.where
' _Bn B 49)
W=
60('0

Sirfce' it may be sﬁbxvn thait C e

S Ko F (@, K )~ BoF (05, )~ Ko (@ 5, o) =—

_ /2L12
W[(KD Epa/p—Kp L1702 ”)]

the expression for the downwash W, obtained by taking Lhe

partial derivative of ®w,, with respect to z may be written

_HB{_Ep  Eo(l—a's)__T=d7
o= A vf_apz"f,[K»Ffam’w)—

) E;?T(a’p, k’pj_—I{-DE‘(G,D, k’p)]} (50)
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Region E
In region E a similar derivation gives

IZfZKE EE
Gg kz

—a’ 2K )—

wn WE

Hﬁ{

T
vi—a'# [KeFla's, k' —ExF(a' g, k' 5) —KzE(a'z, k5] }
(51)

Conditions at the trailing edge.—The value of the vertical
induced velocity immediately ahead of and behind the
trailing-edge wave must, of course, be determinable directly
from equations (21) and (22), respectively, by setting
r=cotz8. If, however, the discussion is restricted to the
=0 plane, 2 much simpler method exists for finding the
downwash at these points. The approach taken here follows
essentially that given by Lagerstrom in reference 4.

?
T
r
K
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FigURE 7.—Sketch of velocity vectors of the air before reaching, on, and afier leaving super-
sonfe airfoil.

Let conditions just ahead of the trailing-edge wave be
denoted by the subseript 2 and conditions just behind the
wave by the subscript 3. Kigure 7 shows a section of a
given wing in the plane y=constant. The Mach waves at
the leading and trailing edge make the angle p=arc sin
1/31, with the z=0 plane, and the wing is presumed to be
at angle of attack a. Assuming the trailing edge to be
normeal to the free-stream direction, the variation in the z
component in velocity when passing through the trailing-
edge wave can be treated as a two-dimensional problem
with the condition imposed that #;=0 in the z=0 plane.

It is known that continuity of flow together with balance
of tangential momentum across the wave lead to the result
that the component of velocity tangential to the wave is
continuous. The tangential components of velocity, V.,
immediately ahead of and behind the wave are given,

respectively, by the expressions

(Vde=(Vy+us) cos potws sin g
(V)s=V, cos po+ws sin g

Equsating these relations, it follows that

wWy=1wa+u; cot py
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From equation (23)

()2

from which it follows that
_Hg ( ____ai_)
2 B \/ 6’ —Yo*

Approximate values of downwash near center line of
wake.—The values of downwash which were obtained on the
zy and zz planes of the wake were exact solutions subjected
to no restrictions other than those originally imposed by the

460 oCy ooty
[8°cs*— 32'3/2

(52)

- use of the linearized equations of flow. On the center line

equations (31), (33), (39), and (44) reduce to the considerably

simpler expressions
&y

To— ro—1
(wPA)l;f}: HﬁJ 1§1+9EI dk; (63)
z—1
6o
(wPC)F=0= [f dAl J(— ksg(l-*—ﬂﬁk ) dkg]
(54)
(@r)sc0=—2 Es (55).
2
(org) g~ B Uk 5
where
(Lz) ¥=0=— 601:;1
EDymo="5"
(kd)y-ﬂ %o B__l
Xo— 1

(kc) y=0=" 90

Since the above expressions are relatively simple to com-
pute, an appronmate method based on the generalized
Taylor’s expansion in the vicinity of the line y=2=0 can
be formulated which reduces the tediousness of the calcula-

downwash function in & portion of the wake for points near
the center line. The next higher terms in the expansion
can be found without difficulty for the region bounded as

follows:
1 1
@ —30<y<3b

(b) Bothy and zlie within the Mach cones
from the trailing-edge tips

£,

= VOOH‘

936646—51—186

tions and gives & good indication of the va.ria.tion_in the
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The problem resolves itself into one of finding the first
nonvanishing coefficients of ¥, and 2, in the series

wiwy=Ao+ 4320+ Bryjo+ Azzo{# “C’zzoyo‘{'__ 32_%24' ceeed (57)
where £
w0= --—--2—‘ETB PR PP LT et e

The value of 4¢ is known fr'o'fn' equations (53) and (55) to be

;)
zg— IKI___-E_’I dl.l) _

o——E' (EA."I' k-6,

From equations (28) and (36) the expressmn for total down-

wash may be written

QI: 1 ) ] yﬂ_ (xg— 1)2"‘7] _

HB™ 2Wo—1) Jute 7 —@o—m*" dn _
Loy fwocrra N T,
2 Jr—1 Y8y (z0—E) (Ez_‘ﬂ) K

The coefficient B; in the expansion is glven by (W)

0—0
Carrying out the differentiation, w1th proper regard for the
singularity in the first. integral, it follows that Bl—-

Slmllarly, it can be shown that Cy=0, while the coefficient

(b’w

o is given by the expression _

B"""—E"F@K“ = Ic’E")_ L

1+k2
T .'060 f (kl_l_eﬂ) [El (1 kllﬂ)ﬂ

where the variables have pré{riously been defined.
In order to calculate the variation with 2, it is necessary

to evaluate A‘_(bzo) -0 where

_K, ljklg] b (59)

Bocu
: y1 (37 Co)
Hrﬁ ﬁf 1,‘90200 —152111 are 1‘Tan z\/(x —to)?— By P— Bt dy_l

1/5 “r,t— By, ) |
zﬁf dxlf [(.22—.’1‘1):—- By — " d?fl

The double integral contributes not-hing to the coefficient,
and the remaining portion of the expression can be evaluated
without integrating by differentiating twice and using
Cauchy’s integral theorem

{Jf"-’ifrz (e?i),n-f,

. Thus

The coefficient .4; will not be evaluated si.n.c'c.a- the. first

higher order term in 2 has been found, Thus, to the first
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order in yo and 2y, the downwash functwn w/wa is

w kg K —
e [ EEa)Bg o

DISCUSSION

The variable 'w/wo (. e, (wp+ww) /wo) xepresents the Lotal
downwash behind the wing divided by the induced vertical
velocity on the wing itself. If e is the downwash angle and '«
the angle of attack of the wmg, then wiwy=de/de.
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FIGURE 8. —Vanation of tho downwash in the zoye plane downstream from the {railing cdcc
for various span stations,

In figure 8, the downwash in the xy plane is presented for
various By’s and spanwise stations and for all values of z
from the trailing edge to a point where the asymptotic value
is closely approached. The region covered in the y direction
extends from the % axis out to about (1/2) 6, where in the
coordinate system used z, equals z/e,, %o equals Byfc, and
6, is the semispan of the wing. Figure 8 can be used to
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assess the accuracy of the approximation, given by equation
(60), that the value of downwash is independent of ¥ in
the neighborhood of the z axis. Within about a half span
from the trailing edge of the wing no general statement can
be made as to the variation of wfw, in the ¥ direction. For
distances greater than a half span from the trailing edge,
however, the variation is quite uniform and w/w, deviates

from its value at =0 only slightly for —;l, €a<?lu<21; bo-

¥:] Fo5c0
73 —=
e Sy
T 14 /———’—"’/
& =
cazioo-i 1.0
.
w ™~
_u’;.4 \
of _——Exoct linearized theory. \
““I ----Approximate fheory N
\
: \
=00
a A 2 .3 4 5 .6
Ya

FIGURE 9.—Variation of downwash across the span at various stations downstream of wing
trailing edge for fo=0.6.

For 8,=0.6, & more extensive study was made of the
variation of downwash with y. Figure 9 represents values
of wfw, across the span for several positions behind the
trailing edge. Immediately behind the trailing edge the
value of wfw, falls and approaches — « as the wing tip is
approached. However, at 0.4 of a root chord behind the
trailing edge (x,=1.4), w/w, rises and reaches the value of
0.7 as the wing tip is reached. At z,=2.2, the spanwise
variation of w/w, is essentially constant. Although equa-
tion (60) is applicable only for region -, it is seen from figure
9 that the approximation that the downwash does not vary
with y is useful out to about a third of a semispan for all
values of x.

The variation of downwash in the zz plane is presented in
figure 10. The curves represent values of w/w, from the
trailing-edge wave downstream to & point where the asymp-
totic value is closely approached. In the immediate vicinity
of the Mach cones from the trailing-edge tips (i. e., zg= 16}
the curves were not continued because w/w, becomes very
large and approaches negative infinity as the Mach cone is
approached. Since this effect results from infinitely large
values of the radial component of induced velocity at the
Mach cone, it does not exist in the z,=0 plane. Such 2
behavior is consistent with the mathematical idealization of
infinite pressures at the leading edge and of an abrupt fall
of load at the trailing edge. Hovwever, in an actual flow field
where these phenomena do not exist the flow will experience
a milder change in passing across the Mach cone. Even
in the theoretical results presented in this report the growth
of the vertical induced velocity in the neighborhood of the
Mach cone is logarithmic, and the interval in which w/w, is
appreciably distorted from the general trend is very small.
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FraURE 10.—Variation of the downwash in the rqz plane downstream from the irailing e_dze.

Some further insight into the behavior of w in the vicinity
of the Mach cone from the trailing-edge tips can be obtained
by studying s single vortex which extends infinitely far ahead
of the origin at an oblique angle to the flow and infinitely
far behind the origin parallel to the flow (fig. 11). The half
of the vortex which extends ahead makes an angle with the
free-stream direction less than the Mach angle so that the
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FigurE 11.—Induced vertical velocity field for bent and unbent supersonic oblique vortex
making an angle with the free stream less than the Mach angle.
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component of frce-st1 eam velomt,y normal to it Wﬂl be sub— _
Thus, outside of the Mach cone originating at.the

sonie.
sudden bend in the vortex at the origin, the Aow will be ex-
actly like that of a linearized. compressible subsonic vortex
with a superimposcd uniform velocity parallel to the line of
the vortex. Inside the Mach cone, however, the flow is

completely changed. Figure 11 gives an indication of the

change. The term “bent” vortex refers to the vortex along
the z axis which is turned suddenly at the origin from the
angle it had maintained from — .. The term ‘“unbent”
vortex on the other hand refers to a vortex which maintains
the same angle from — « to + =. The unbent vortex is
included. in figure 11 for coniparative purposes. ~The figure
shows that on the 2=0 plane (section AA) the downwash is
finite and continuous in passing through the Mach cone, but
that above the 2=0 plane (section BB) the value of @ be-
comes infinite as the cone surface is approached from the
inside.

wing as given in figure 10.

Exact linearized theory
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Figure 12.—Variation of downwash in the zozs plane at various positions on zp axls.

Approximate values of downwash in the zz plane computed
from equation (60) are compared in figure 12 with the results
from the exact solution. The applo‘mnauon that to a first
order the variation of w/wy, mth 2/0, 18 linear with a slope
—1/E, is seen to be useful up to about a third of & semispan.

Values of wfw, were not computed for points off the 2
and ry planes; however, the methods given in the report are
general and directly applicable. The results already gwen
would indicate that the approximate solution is valid in the
vicinity of (1/3)6, about the z axis. This assumption can be
checked for large distances behind the trailing edge by con-
sidering the flow field as @, approaches . Thus figure 13
shows a comparison between the exact value of w/w, derived
by means of the linearized equation and the approximate
method based upon the use of a generalized Taylor’s expan-
sion. The agreement is scen to be satisfactory out to about

one-third of & semispan either vutwally or hor1zontallv from

the # axis.
Throughout the analysis it was obvmus that the calcula-
tion of the downwash due to. the doublets on the wake wy

was much simpler to perform than the calculation of the.

downwash due to the doublets on the plan form w,. For
example, the formulas for the downwash on the z axis were

This behavior at the Mach cone may aid in inter-
pretrng the dlscont,mmty m the results for the complete
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i“zdvnm 13.—Downwash at a large distance behind triangular wing.

given in terms of-the elliptic integrals & and K; for wy the
evaluation of E and X was sufficient but for wp a numerical
integration involving E and K was necessary. Therefore,
in calculating the downwash for wings with plan forms other
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quaz 14.—Variation of the part of downwash on r axis induced by deubluts I wake with
distance downstream [n chord lengths, ro=zx/cs. ’l‘mngular wIng
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qum_; 15.—§?§riation of the part of downwash on x axis induced by doublets an the p'lan'
form with distance downstream in chord lengths, ro=zfce. Triangular wing.
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than triangular, it is useful to know in what regions the con-
tribution of wp to w is small. For this purpose & comparison
of ww with wp along the x axis of the triangular wing is shown
in figures 14 and 15. Figure 14 gives the value wyfwy, figure
15 the value of wpsfwy, and figure 16 the total downwash
(ww+wp)fw, or just wjw,. An inspection of figure 15 shows
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Ficure 16.—Variation of the total downwash on r axis behind & trisngular wing swept be-
hind Mach cone with distance downstream In chord lengths, ro=xfc.

that the effect of the doublets on the plan form dies out rap-
idly behind the point xy=1-+6, that is behind the point of
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FIGURE 17.—Variation of downwash on r axis with Alach number at various positions down,
stream of trailing edge. F=45°.

intersection of the z axis with the Mach cone from the
trailing-edge tip. :

An indication of the variation of downwash with Mach
number is given in figure 17. This figure shows values of
wfw, on the z axis plotted as a function of M, for vafious
values of z. The value of the sweepback angle is 45°, and
the Mach number range covered could be extended to 1.4
and the leading edge would remain subsonic.

AMES AERONAUTICAL L:ABORATORY,
NatioxnaL Apvisory COMMITTEE FOR AERONAUTICS,
MovrerT FIELD, Canr., Now. 9, 1948.



APPENDIX A '_ R

EVALUATION OF SPECIAL INTEGRALS

Integral I, . R —_

‘Since there are no singularities in I, the finite pa,i't' sign

may be discarded. The linear term in-the radical is elimi-

nated by the transformatlon n= ('yl+61t)/(l+t) and the

integral becomes

“—T[ _ . o
‘/@ —) (ie—p) [P AI=[G—w) W —y)E 5,
TGt W [I— G/ ™
) i :
(A
The expressions for §; and 7 may be. combmed to gwe the
useful identities . . e
e "
and -

(=) Gr—u) =0 —7) Gi—p) |

Noting that the 1ntegrand is an even functmn equat,lon
(A1) may be reduced to the canonical form

(f‘ 'YI) ('YL—#) ""'YI l—w e
Ix Gi—y)7d (61 ) j; a —Ic 7 z)rg dw (Az) _

by the substitution
o i w--_;__al_'_l‘,

14
- A em

By the introduction of the Jacobien clliptic functions

(reference 10) in the transformation w=sn %, the mtegratmn

may be completed and

—"Yl) (’Yl—ﬂ) B —"Yl)f 2 —
I]_—" (51""71)')’1 Gd u d’u

“1 [
_E’\/ R B

(43)

where ¢d u=cn u/dn u.

Integral'.'lg_ o : ' '____

is wrltten

Ig=

_PRE ) T

dy

[1+E” E(utu’) +up’

2E(n £
In this case the followmg 1dent1t.1es may be obtamed
directly from the definitions of ¥: and é,: o

& ) =0 |

2E(n+£)

11/ E+n @ —nvVE—n—p _ (M)_

(EFye) (0 —8) + (W — ) (£ 8) =0

The transformations. q=7;"_'—_ t’t and o

£t are made
—

(v —-#) (E—-b'a)-l-(‘Yz
and o and a.ft.er a]gebram sunphﬁcatlons equat:on (A4) becomes
L= b—vs W —=p{T. W =v) e+H G+ _ (’Yz—#) (E - 1) (E— ')] [f _ ] "
TGV 2% (LT G- GRHED =0 =D @ L) YOFS w"> U=adl f
(W +E (W — :I 14k (—n) (E u) Ya—it l 1+w }
s (=] Lo P T= T R ( +az—n) f iR f (49
By applying the fundamen_t_@_l propel tles of even and odd “and if . _ -
functions, the first two integrals in equation (A5) can readily 1 i e
be integrated. The procedure for handling the finite part J (“’)—(1+w)3/’ V1—kiu? .
sign over. the third integral w111 be consndered in deta.ll | and
Since, : ele ce - | _ .
S e F(1) =23T1—m;2 .

— o
do2 |[* G

: itw —
f—: I—o®) VO —Fad) 1 — o)

then by equation (6)

o.ﬁlu(l cv’i)s""w/l kot [J; (1—w2)8’21/1 —ku?

1 do _ 1 ___
ﬁ%‘_”(_l—w)"'_{’_dl—_-k,’ 1/2(1—]::2’)]_

[.L (1—w=)3f=1/1 Tt 'lffi §/2(1—o,1)(1—k255]=

2[ cn’u ljﬂ 1/2(1—-4-;) (l—kg

B A

g

9 { [Kz-i-hm

w—r] (1 —']1’.'22) '\/1 —W

298 e e

PO T hm 1 V2t (1—w)(1 fca’)}
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The solution of equation (A5} becomes, after algebraic
simplification

8 (p—p'+28) —2pf
L=2{y == VEae—m 7 K=
1 JE—wE+s)
e 49
Integral I3

The procedure for integrating I; is similar to that pre-
viously discussed in connection with I;. In this case, the

integral is canonicalized by the substitution m=\/ %’ t and
3

the solution may be written

L=/ EE =8 -y (A7)
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